List of programming languages by type – CodeDocs.Sale presets
Looking for:
Reaktor 6 activation code free

A tokamak (/ ˈ t oʊ k ə m æ k /; Russian: токамáк) is a device which uses a powerful magnetic field to confine plasma in the shape of a replace.me tokamak is one of several types of magnetic confinement devices being developed to produce controlled thermonuclear fusion replace.me of , it was the leading candidate for a practical fusion reactor. Reaktor Tutorials. Ableton Push. Dune Tutorials. Live. Reason Absynth Tutorials. Eurorack. Logic Pro X Tutorials. 30 days for free Unlimited free trial for 30 days includes all features and kits. 30 Day FREE TRIAL Visit activation link and enter set new password; Sign in. DON’T HAVE AN ADSR ACCOUNT? Create your account. May 31, · In recent years, the number of vendors promoting small modular reactor (SMR) designs, each having an electric power capacity 1, MW elec and utilize water as a coolant. Approximately 30 of the 70 SMR designs listed in the International Atomic . In source code. Source embeddable languages embed small pieces of executable code inside a piece of free-form text, often a web page. Client-side embedded languages are limited by the abilities of the browser or intended client. They aim to provide dynamism to web pages without the need to recontact the server. 6 Loyalty credits expire 30 days after initial purchase * Not including video subscriptions Orders Subscriptions Workshops Wishlist 0 Saved Videos 0 Following 0 Free courses Account Details Contact Support Add Product My Earnings ADSR Reporting Refer a friend for $ Customer Orders Add News Item Add New Product Log out.
Drum Machine – ADSR.KOSHA.AUDIO
Even better, we have back-dated reaktor 6 activation code free so any purchases you made since have also been credited to your account! Click the button below to claim your free credit. Sounds by genre Sounds by formats Sounds by labels View all sounds. Glitch Hop. Deep House. Acid House. Dirty South. Hip Hop. Acoustic House. Drum and Bass. Dub Techno. Bass House. Instrument Models. Big Room. Sound Reaktor 6 activation code free.
Jump Style. Tech House. Chicago House. Chill Hop. Festival House. Melbourne Bounce. Future Bass. Trip Hop. Future Bounce. Future House. Tropical House. Circuit Bending. Future Pop. Neo Soul. Vocal Reaktor 6 activation code free. Future Wobble. Nu Disco. Maschine Samples. Construction Kits. Massive X Presets. Cthulhu Presets. Reaktor 6 activation code free Ultra Analog.
Nerve Presets. Synapse Dune. Ableton Live. NI Massive Presets. Synapse Legend. Ableton Wavetable. DSI Pro 2.
FL Studio Project. Other synths. PPG Wave. Pro TONE2 Saurus. RC Presets. Arturia CS80 V. Arturia Jupiter V. Kick 2. Valhalla Vintage Reverb. Arturia Mini V. Kontakt Libraries. Virus TI. Arturia Modular V. Vital Presets. Arturia Pigments. Korg Mono Poly. Roland GAIA sh Arturia Prophet V. LFO Tool. Logic Pro Template. Scanned Synth Pro 2. Logic Ultrabeat. Serum Presets. Sonic Academy. Maschine Kits. Macbeth Sounds. Sonics Empire.
Mainroom Warehouse. Sonorous Sounds. Digit Sounds. Major Loops. Sonus Dept. Digital Felicity. Martin Sampleware. Soul Family Entertainment. Dirty Production. Matte Noise. Sound Design Tutorials. A-Grade Audio. Double Bang Music. Maverick Samples. Sound Masters. ADSR 20 Designers for Easy Sounds. ADSR Sounds. Echo Sound Works. Mondo По ссылке. Aetheric Samples by Kryptic.
Ecliptiq Audio. EDM Sound Productions. Akai Professional. Eksit Sounds. Analog Factory. Mycrazything records.
Reaktor 6 activation code free.Ethno World 6
Reaktor Tutorials. Ableton Push. Dune Tutorials. Live. Reason Absynth Tutorials. Eurorack. Logic Pro X Tutorials. 30 days for free Unlimited free trial for 30 days includes all features and kits. 30 Day FREE TRIAL Visit activation link and enter set new password; Sign in. DON’T HAVE AN ADSR ACCOUNT? Create your account. In source code. Source embeddable languages embed small pieces of executable code inside a piece of free-form text, often a web page. Client-side embedded languages are limited by the abilities of the browser or intended client. They aim to provide dynamism to web pages without the need to recontact the server. Download the best VST plugins, effects, virtual instruments, Kontakt instruments, Reaktor and more for Windows and Mac. Updated with new plugins weekly. Instant download.
A simple, smart and elegant Drum Machine.Reaktor 6 activation code free
Warp Academy. Dark Arts. Shoogle Studios. Waveform Recordings. Dark Silence. Loops 4 Producers. Lostbeat Audio. Skeleton Samples.
Decay Drums. Loyal Music Group. Skifonix Sounds. Xenos Soundworks. Decibel Sounds. Skull Label. YnK Audio. Deep Data Loops. Lybeck Instruments. Slam Academy. Zbandut Sound Consortium. Delicate Beats. Smokey Loops. Maschine 2. AAS Ultra Analogue. FL Studio Projects. Ableton Templates. Massive Presets. Max For Live. Halloween Pitch Shifter. Comprised Bundle. Izoptope Breaktweaker.
V Station. Valentine’s Day Drums Rack. Dune 2. Logic Pro Templates. Editor’s Pick. Ableton Live Tutorials. Liquid Notes Tutorials. Reaktor Tutorials. Ableton Push. Dune Tutorials. Reason Absynth Tutorials. Logic Pro X Tutorials.
Access Virus Tutorials. Maschine Jam. Rounds Tutorials. Fab Filter Pro R. Maschine Tutorials. First Look. Massive Tutorials. Serum Tutorials. FL Studio Tutorials. Massive X Tutorials. Arrangement Tutorials. Flesh Tutorials. Mixing Tutorials. FM8 Tutorials. Monark Tutorials. Spire Tutorials. Audiaire ZONE. Free Plug-ins. Moog Minitaur Tutorials. Studio Tours. MPC Tutorials. Sylenth Tutorials. Bazille Tutorials. Gear Chat. Music Theory Tutorials. Sytrus Tutorials. Bitwig Tutorials.
Cherry Audio. TR 8 Tutorials. Plugin Of The Week. Traktor Tutorials. Cubase Tutorials. Komplete Pocket Operators Tutorials. UVI Synth Anthology 2. D16 Tutorials. Komplete Kontrol Tutorials. Polyplex Tutorials. Zebra Tutorials. Kontakt Tutorials. Production Concepts. Kontour Tutorials. Razor Tutorials. Massive X. Sound Design. FL Studio. Metering Plugins. Studio One. FM Synthesis. Moog Minitaur. Music Theory. SynthMaster One. In The Studio With Neutron iZotope.
T-RackS 5. The Glue. Kontrol S Series. Ozone 7. Launchpad Pro. Ozone 8. Course Bundles. Production Advice. VCV Rack. Logic Pro. Hip Hop. Acoustic House. Drum and Bass. Dub Techno. Bass House. Instrument Models. Big Room. Sound Effects. Jump Style. Tech House. Chicago House. Chill Hop. Festival House. Melbourne Bounce. Future Bass. Trip Hop. Future Bounce. Future House. Tropical House. Circuit Bending. Future Pop. Neo Soul. Vocal Samples. Future Wobble. Nu Disco.
Maschine Samples. Construction Kits. Massive X Presets. Cthulhu Presets. AAS Ultra Analog. Nerve Presets. Synapse Dune. Ableton Live. NI Massive Presets. Synapse Legend. Ableton Wavetable. DSI Pro 2. FL Studio Project. Other synths. PPG Wave. Pro TONE2 Saurus. RC Presets. Arturia CS80 V. Arturia Jupiter V.
Kick 2. Valhalla Vintage Reverb. Arturia Mini V. Kontakt Libraries. Virus TI. Arturia Modular V. Vital Presets. Arturia Pigments. Korg Mono Poly.
Roland GAIA sh Arturia Prophet V. LFO Tool. Logic Pro Template. Scanned Synth Pro 2. Logic Ultrabeat. Serum Presets. Sonic Academy. Maschine Kits. Macbeth Sounds. Sonics Empire. Mainroom Warehouse. Sonorous Sounds. Digit Sounds. Major Loops. Sonus Dept. Digital Felicity. Martin Sampleware. Soul Family Entertainment. Dirty Production. Matte Noise.
Sound Design Tutorials. A-Grade Audio. Double Bang Music. Maverick Samples. Sound Masters. ADSR 20 Designers for Easy Sounds. ADSR Sounds. Echo Sound Works. Mondo Loops.
Aetheric Samples by Kryptic. Ecliptiq Audio. EDM Sound Productions. Akai Professional. Eksit Sounds. Analog Factory. Mycrazything records. Soundtrack Loops.
Ancore Sounds. New Frontiers Audio. AngelicVibes Sounds. Empire SoundKits. New Loops. Spark Presets. Angry Parrot. Epic Stock Media. New Nation. Apollo Sound. Equinox Sounds.
Next Day Audio. SPF Samplers. Aquila Beats. Essential Audio Media. Blackwood Samples. Innovation Sounds. Raw Loops. Toolroom Records. Inqboi Beatz. Red Sounds. Touch Loops. Inspiration Sounds. Regal Loops. Trance Euphoria. Bones N Grit Audio. Jonny Strinati. Trap Veterans. Boom Library. Resonance Sound. Triad Sounds. Brandon Chapa. Joseph Hollo. True Samples. Brightest Dark Place. JT Samples. Rhythm Lab. Bring The Kingdom. Jungle Loops. Riemann Kollektion. Tunecraft Sounds.
KEDR Audio. Room One Audio. Twolegs Toneworks. Kid Zero. Roundel Sounds. Undisputed Music. Caelum Audio Sounds. Killer Tone. Sample Fox. Uneek Sounds. Capi Beats. Sample Station. Catalyst Samples. King Loops. Sample Tools by Cr2. Urban Elite. Certified Audio. Kits Kreme Audio.
Ushuaia Music. Chop Shop Samples. Samples Choice. Code Sounds. Kryptic Samples. Vanilla Groove Studios. Cognition Strings. Laniakea Sounds. Velodic Sounds.
Columbo Sounds. Layercake Samples. Seven Sounds. Cosmic Gateway Productions. Leap Into The Void. Voxybox Acapellas. LGND Media. D-Fused Sounds. Loop nation. Wall Samples. Daniel Strongin. Warp Academy. Dark Arts. Shoogle Studios. Waveform Recordings. Dark Silence. Loops 4 Producers.
Lostbeat Audio. Skeleton Samples. Decay Drums. Loyal Music Group. Skifonix Sounds. Xenos Soundworks. Decibel Sounds. Skull Label. YnK Audio. Deep Data Loops. Lybeck Instruments. Slam Academy. Zbandut Sound Consortium.
Delicate Beats. Smokey Loops. Maschine 2. AAS Ultra Analogue. FL Studio Projects. Ableton Templates. Massive Presets. Max For Live. Halloween Pitch Shifter. Comprised Bundle. Izoptope Breaktweaker. V Station. Valentine’s Day Drums Rack. Dune 2. Logic Pro Templates. Editor’s Pick. Ableton Live Tutorials.
Liquid Notes Tutorials. Reaktor Tutorials. Ableton Push. Dune Tutorials. Reason Absynth Tutorials. Logic Pro X Tutorials.
Access Virus Tutorials. Maschine Jam. He offered to give a talk at Atomic Energy Research Establishment, at the former RAF Harwell , where he shocked the hosts by presenting a detailed historical overview of the Soviet fusion efforts. ZETA was, by far, the largest and most powerful fusion machine to date. Supported by experiments on earlier designs that had been modified to include stabilization, ZETA intended to produce low levels of fusion reactions.
This was apparently a great success, and in January , they announced the fusion had been achieved in ZETA based on the release of neutrons and measurements of the plasma temperature. Vitaly Shafranov and Stanislav Braginskii examined the news reports and attempted to figure out how it worked. One possibility they considered was the use of weak “frozen in” fields, but rejected this, believing the fields would not last long enough.
They then concluded ZETA was essentially identical to the devices they had been studying, with strong external fields. By this time, Soviet researchers had decided to build a larger toroidal machine along the lines suggested by Sakharov. In particular, their design considered one important point found in Kruskal’s and Shafranov’s works; if the helical path of the particles made them circulate around the plasma’s circumference more rapidly than they circulated the long axis of the torus, the kink instability would be strongly suppressed.
Today this basic concept is known as the safety factor. This path is controlled by the relative strengths of the external magnets compared to the field created by the internal current.
Following this criterion, design began on a new reactor, T-1, which today is known as the first real tokamak. The success of the T-1 resulted in its recognition as the first working tokamak. Yavlinskii was already preparing the design of an even larger model, later built as T To Shafranov’s surprise, the system did use the “frozen in” field concept.
Petersberg began plans to build a similar machine known as Alpha. Only a few months later, in May, the ZETA team issued a release stating they had not achieved fusion, and that they had been misled by erroneous measures of the plasma temperature. T-1 began operation at the end of This was traced to impurities in the plasma due to the vacuum system causing outgassing from the container materials. In order to explore solutions to this problem, another small device was constructed, T As part of the second Atoms for Peace meeting in Geneva in September , the Soviet delegation released many papers covering their fusion research.
Among them was a set of initial results on their toroidal machines, which at that point had shown nothing of note. The “star” of the show was a large model of Spitzer’s stellarator, which immediately caught the attention of the Soviets. In contrast to their designs, the stellarator produced the required twisted paths in the plasma without driving a current through it, using a series of magnets that could operate in the steady state rather than the pulses of the induction system.
Kurchatov began asking Yavlinskii to change their T-3 design to a stellarator, but they convinced him that the current provided a useful second role in heating, something the stellarator lacked. At the time of the show, the stellarator had suffered a long string of minor problems that were just being solved. Solving these revealed that the diffusion rate of the plasma was much faster than theory predicted.
Similar problems were seen in all the contemporary designs, for one reason or another. The stellarator, various pinch concepts and the magnetic mirror machines in both the US and USSR all demonstrated problems that limited their confinement times. From the first studies of controlled fusion, there was a problem lurking in the background. During the Manhattan Project, David Bohm had been part of the team working on isotopic separation of uranium.
In the post-war era he continued working with plasmas in magnetic fields. Using basic theory, one would expect the plasma to diffuse across the lines of force at a rate inversely proportional to the square of the strength of the field, meaning that small increases in force would greatly improve confinement.
But based on their experiments, Bohm developed an empirical formula, now known as Bohm diffusion , that suggested the rate was linear with the magnetic force, not its square. If Bohm’s formula was correct, there was no hope one could build a fusion reactor based on magnetic confinement. To confine the plasma at the temperatures needed for fusion, the magnetic field would have to be orders of magnitude greater than any known magnet. Spitzer ascribed the difference between the Bohm and classical diffusion rates to turbulence in the plasma, [42] and believed the steady fields of the stellarator would not suffer from this problem.
Various experiments at that time suggested the Bohm rate did not apply, and that the classical formula was correct. But by the early s, with all of the various designs leaking plasma at a prodigious rate, Spitzer himself concluded that the Bohm scaling was an inherent quality of plasmas, and that magnetic confinement would not work. In contrast to the other designs, the experimental tokamaks appeared to be progressing well, so well that a minor theoretical problem was now a real concern.
In the presence of gravity, there is a small pressure gradient in the plasma, formerly small enough to ignore but now becoming something that had to be addressed.
This led to the addition of yet another set of magnets in , which produced a vertical field that offset these effects. These were a success, and by the mids the machines began to show signs that they were beating the Bohm limit. Spitzer, reviewing the presentations, suggested that the Bohm limit may still apply; the results were within the range of experimental error of results seen on the stellarators, and the temperature measurements, based on the magnetic fields, were simply not trustworthy.
The next major international fusion meeting was held in August in Novosibirsk. By this time two additional tokamak designs had been completed, TM-2 in , and T-4 in Results from T-3 had continued to improve, and similar results were coming from early tests of the new reactors.
At the meeting, the Soviet delegation announced that T-3 was producing electron temperatures of eV equivalent to 10 million degrees Celsius and that confinement time was at least 50 times the Bohm limit. These results were at least 10 times that of any other machine.
If correct, they represented an enormous leap for the fusion community. Spitzer remained sceptical, noting that the temperature measurements were still based on the indirect calculations from the magnetic properties of the plasma. Many concluded they were due to an effect known as runaway electrons , and that the Soviets were measuring only those extremely energetic electrons and not the bulk temperature.
The Soviets countered with several arguments suggesting the temperature they were measuring was Maxwellian , and the debate raged. In the aftermath of ZETA, the UK teams began the development of new plasma diagnostic tools to provide more accurate measurements. Among these was the use of a laser to directly measure the temperature of the bulk electrons using Thomson scattering. This technique was well known and respected in the fusion community; [47] Artsimovich had publicly called it “brilliant”.
Artsimovich invited Bas Pease , the head of Culham, to use their devices on the Soviet reactors. At the height of the cold war , in what is still considered a major political manoeuvre on Artsimovich’s part, British physicists were allowed to visit the Kurchatov Institute, the heart of the Soviet nuclear bomb effort.
The British team, nicknamed “The Culham Five”, [49] arrived late in After a lengthy installation and calibration process, the team measured the temperatures over a period of many experimental runs. Initial results were available by August ; the Soviets were correct, their results were accurate.
The team phoned the results home to Culham, who then passed them along in a confidential phone call to Washington. One serious problem remained. Because the electrical current in the plasma was much lower and produced much less compression than a pinch machine, this meant the temperature of the plasma was limited to the resistive heating rate of the current.
First proposed in , Spitzer resistivity stated that the electrical resistance of a plasma was reduced as the temperature increased, [53] meaning the heating rate of the plasma would slow as the devices improved and temperatures were pressed higher.
Artsimovich had been quick to point this out in Novosibirsk, stating that future progress would require new heating methods to be developed. One of the people attending the Novosibirsk meeting in was Amasa Stone Bishop , one of the leaders of the US fusion program. One of the few other devices to show clear evidence of beating the Bohm limit at that time was the multipole concept.
While moderately successful on their own, T-3 greatly outperformed either machine. Bishop was concerned that the multipoles were redundant and thought the US should consider a tokamak of its own.
When he raised the issue at a December meeting, directors of the labs refused to consider it. Melvin B. Gottlieb of Princeton was exasperated, asking “Do you think that this committee can out-think the scientists? Oak Ridge had originally entered the fusion field with studies for reactor fueling systems, but branched out into a mirror program of their own. By the mids, their DCX designs were running out of ideas, offering nothing that the similar program at the more prestigious and politically powerful Livermore didn’t.
This made them highly receptive to new concepts. After a considerable internal debate, Herman Postma formed a small group in early to consider the tokamak.
Primary among them was the way the external field was created in a single large copper block, fed power from a large transformer below the torus.
This was as opposed to traditional designs that used magnet windings on the outside. They felt the single block would produce a much more uniform field. It would also have the advantage of allowing the torus to have a smaller major radius, lacking the need to route cables through the donut hole, leading to a lower aspect ratio , which the Soviets had already suggested would produce better results. In early , Artsimovich visited MIT , where he was hounded by those interested in fusion.
He finally agreed to give several lectures in April [54] and then allowed lengthy question-and-answer sessions. As these went on, MIT itself grew interested in the tokamak, having previously stayed out of the fusion field for a variety of reasons. Bruno Coppi was at MIT at the time, and following the same concepts as Postma’s team, came up with his own low-aspect-ratio concept, Alcator. Instead of Ormak’s toroidal transformer, Alcator used traditional ring-shaped magnets but required them to be much smaller than existing designs.
MIT’s Francis Bitter Magnet Laboratory was the world leader in magnet design and they were confident they could build them. During , two additional groups entered the field. Meskipun nama usulan Lavoisier tidak diterima dalam bahasa Inggris, karena itu menuduh bahwa hampir semua gas tentu saja dengan oksigen sebagai satu-satunya pengecualian adalah mefitik, nama tersebut digunakan dalam banyak bahasa Prancis, Italia, Portugis, Polandia, Rusia, Albania, Turki, dll.
Maksud Chaptal adalah bahwa nitrogen merupakan bagian esensial dari asam nitrat , yang pada gilirannya merupakan produk dari niter. Aplikasi awal senyawa nitrogen pada bidang militer, industri, dan pertanian menggunakan saltpeter natrium nitrat atau kalium nitrat , paling penting dalam bubuk mesiu , dan kemudian sebagai pupuk.
Pada tahun , Lord Rayleigh menemukan bahwa debit listrik dalam gas nitrogen menghasilkan “nitrogen aktif”, suatu alotrop monoatomik nitrogen. Untuk waktu yang lama, sumber senyawa nitrogen terbatas. Sumber daya alami berasal dari hayati atau deposit nitrat yang dihasilkan oleh reaksi atmosferik.
Fiksasi nitrogen oleh proses industri seperti proses Frank—Caro dan proses Haber—Bosch meredakan kekurangan senyawa nitrogen, hingga setengah dari produksi pangan global lihat aplikasi sekarang bergantung pada pupuk nitrogen sintetis. Atom nitrogen memiliki tujuh elektron. Dalam keadaan dasar, mereka teratur dalam konfigurasi elektron 1s 2 2s 2 2p 1 x 2p 1 y 2p 1 z.
Oleh karena itu, ada lima elektron valensi dalam orbital 2s dan 2p, tiga di antaranya elektron p tidak berpasangan. Ia adalah salah satu unsur dengan elektronegativitas tertinggi di antara unsur-unsur 3,04 pada skala Pauling , hanya dilampaui oleh klorin 3. Nitrogen tidak memiliki kimia kation sederhana, karena angka yang sangat tinggi ini. Kurangnya nodus radial di subkelopak 2p secara langsung bertanggung jawab atas banyak sifat anomali dari baris pertama blok-p , terutama pada nitrogen, oksigen, dan fluor.
Subkelopak 2p sangat kecil dan memiliki radius yang sangat mirip dengan kelopak 2s, sehingga memfasilitasi hibridisasi orbital.
Hal ini juga menghasilkan gaya tarik elektrostatik yang sangat besar antara inti dan elektron valensi pada kelopak 2s dan 2p, menghasilkan elektronegativitas yang sangat tinggi. Hipervalensi hampir tidak dikenal dalam unsur 2p dengan alasan yang sama, karena elektronegativitas yang tinggi menyulitkan atom nitrogen kecil untuk menjadi atom sentral pada ikatan empat elektron tiga pusat yang kaya elektron karena akan cenderung menarik elektron dengan kuat pada dirinya sendiri.
Jadi, terlepas dari posisi nitrogen di kepala golongan 15 tabel periodik, kimianya menunjukkan perbedaan yang sangat besar daripada kongenernya yang lebih berat fosforus , arsen , antimon , dan bismut. Nitrogen dapat bermanfaat dibandingkan dengan tetangga horisontalnya karbon dan oksigen serta tetangga vertikalnya pada kolom pniktogen fosforus, arsen, antimon, dan bismut.
Meskipun masing-masing unsur periode 2 dari litium sampai nitrogen menunjukkan beberapa kemiripan dengan unsur periode 3 pada golongan berikutnya dari magnesium hingga belerang dikenal sebagai hubungan diagonal , derajat mereka turun dengan tiba-tiba melewati pasangan boron-silikon, sehingga kesamaan nitrogen dengan belerang sebagian besar terbatas pada senyawa cincin nitrida belerang ketika dari kedua unsur tersebut hanya satu yang ada.
Nitrogen jauh lebih menyerupai oksigen daripada karbon dengan elektronegativitas tinggi seiring dengan kemampuannya untuk ber ikatan hidrogen sekaligus membentuk kompleks koordinasi dengan menyumbangkan pasangan elektron sunyinya. Sifat ini tidak mungkin bagi tetangga vertikalnya; dengan demikian, senyawa nitrogen oksida , nitrit , nitrat , nitro -, nitroso -, azo -, dan diazo -, azida , sianat , tiosianat , dan turunan imino tidak menggema ke fosforus , arsen , antimon , atau bismut.
Namun, dengan cara yang sama, kompleksitas asam okso fosforus tidak menggema dengan nitrogen. Nitrogen memiliki dua isotop stabil: 14 N dan 15 N. Hal ini menyebabkan berat atomnya menjadi sekitar 14, u. Kelimpahan relatif 14 N dan 15 N hampir konstan di atmosfer tetapi dapat bervariasi di tempat lain, karena fraksinasi isotop alami dari reaksi redoks biologis dan penguapan amonia atau asam nitrat alami. Reaksi ini biasanya menghasilkan pengayaan 15 N dari substrat dan penipisan produk.
Isotop berat 15 N pertama kali ditemukan oleh S. Alhasil, signal-to-noise ratio untuk 1 H sekitar kali lipat lebih besar daripada 15 N pada kekuatan medan magnet yang sama. Senyawa yang diperkaya 15 N memiliki keuntungan bahwa dalam kondisi standar, mereka tidak mengalami pertukaran kimiawi atom nitrogen mereka dengan nitrogen di atmosfer, tidak seperti senyawa dengan isotop hidrogen , karbon , dan oksigen berlabel yang harus dijauhkan dari atmosfer. Dari sepuluh isotop lain yang dihasilkan secara sintetis, mulai dari 12 N sampai 23 N, 13 N memiliki waktu paruh sepuluh menit dan isotop sisanya memiliki waktu paruh dalam kisaran detik 16 N dan 17 N atau bahkan milidetik.
Tidak ada isotop nitrogen lain yang mungkin terjadi karena mereka akan berada di luar garis tetesan nuklir , yang mengeluarkan proton atau neutron. Radioisotop 16 N adalah radionuklida yang dominan di dalam pendingin reaktor air bertekanan atau reaktor air didih selama operasi normal, dan dengan demikian ini adalah indikator kebocoran yang sensitif dan cepat dari sistem pendingin utama ke siklus uap sekunder, dan merupakan alat pendeteksi utama kebocoran tersebut.
Ini memiliki waktu paruh pendek sekitar 7,1 detik, [32] tetapi selama peluruhannya kembali ke 16 O menghasilkan radiasi gamma berenergi tinggi 5 sampai 7 MeV. Nitrogen atom, juga dikenal sebagai nitrogen aktif, sangat reaktif, berbentuk triradikal dengan tiga elektron yang tidak berpasangan. Atom nitrogen bebas mudah bereaksi dengan sebagian besar unsur untuk membentuk nitrida, dan bahkan ketika dua atom nitrogen-bebas bertumbukan untuk menghasilkan molekul N 2 yang tereksitasi, mereka dapat melepaskan begitu banyak energi pada tumbukan dengan molekul stabil semacam karbon dioksida dan air menyebabkan fisi homolitik yang menghasilkan radikal seperti CO dan O atau OH dan H.
Nitrogen atomik disiapkan dengan melewatkan aliran listrik melalui gas nitrogen pada 0,1—2 mmHg, yang menghasilkan nitrogen atom bersamaan dengan emisi kuning peach yang memudar perlahan sebagai pendaran selama beberapa menit bahkan setelah aliran listrik berakhir. Mengingat reaktivitas nitrogen atom yang besar, nitrogen elementer biasanya terjadi sebagai molekul N 2 , dinitrogen. Ini menjelaskan ke-inert-an kimia dinitrogen.
Ada beberapa indikasi teoretis bahwa oligomer dan polimer nitrogen lainnya memungkinkan. Jika bisa disintesis, mereka mungkin memiliki aplikasi potensial sebagai bahan dengan kepadatan energi yang sangat tinggi, yang bisa digunakan sebagai propelan atau bahan peledak yang kuat. Kebalikannya berlaku untuk pniktogen yang lebih berat, yang lebih memilih alotrop poliatomik. Struktur ini mirip dengan berlian , dan keduanya memiliki ikatan kovalen yang sangat kuat, yang menghasilkan julukan “berlian nitrogen”.
Ia membentuk cakupan permukaan dinamis yang signifikan pada permukaan Pluto [41] dan bulan bagian luar dari Tata Surya seperti Triton. Ini sangat lemah dan mengalir dalam bentuk gletser dan pada geyser Triton, gas nitrogen berasal dari daerah kutub es kutub. Kompleks ini, di mana molekul nitrogen menyumbang setidaknya satu pasang elektron sunyinya ke kation logam pusat, menggambarkan bagaimana N 2 dapat mengikat logam pada nitrogenase dan katalis untuk proses Haber : Proses ini yang melibatkan aktivasi dinitrogen sangat penting dalam biologi dan dalam produksi pupuk.
Dinitrogen mampu membentuk ikatan koordinasi dengan logam melalui lima cara berbeda. Beberapa kompleks memiliki beberapa ligan N 2 dan beberapa fitur N 2 yang terikat dalam berbagai cara.
Saat ini, telah dikenal kompleks dinitrogen untuk hampir semua logam transisi, terhitung beberapa ratus senyawa. Mereka biasanya disiapkan melalui tiga metode: [24]. Nitrogen berikatan dengan hampir semua unsur dalam tabel periodik kecuali tiga gas mulia pertama, helium , neon , dan argon , dan beberapa unsur setelah bismut yang berumur sangat pendek, menciptakan berbagai macam senyawa biner dengan berbagai sifat dan aplikasi.
Mereka bisa diklasifikasikan sebagai “seperti garam” sebagian besar ionik , kovalen, “seperti intan”, dan metalik atau interstisial , meskipun klasifikasi ini memiliki keterbatasan yang muncul justru dari kontinuitas jenis ikatan, bukannya jenis diskret dan terpisah seperti yang tersirat dari nama-nama klasifikasinya. Mereka umumnya disiapkan dengan mereaksikan langsung logam dengan nitrogen atau amonia kadang-kadang setelah pemanasan , atau melalui dekomposisi termal amida logam: [46].
Banyak varian yang mungkin terbentuk melalui proses ini. Azida logam sub-golongan B berada di golongan 11 sampai 16 jauh kurang ionik, memiliki struktur yang lebih rumit, dan mudah meledak ketika terkena kejut.
Banyak nitrida biner kovalen yang diketahui. Silikon nitrida Si 3 N 4 dan germanium nitrida juga dikenali pada dasarnya kovalen: terutama silikon nitrida yang merupakan bahan yang menjanjikan dalam pembuatan keramik jika tidak terkendala pada kerumitan proses sinteringnya. Khusus untuk nitrida golongan 13 , yang merupakan bahan semikonduktor yang menjanjikan, adalah bahan yang isoelektrik dengan grafit dan silikon karbida , serta memiliki kemiripan truktur: ikatan mereka berubah dari kovalen ke ionik sepanjang golongan dari atas ke bawah.
Secara khusus, karena unit B—N isoelektrik dengan C—C, dan ukuran karbon berada di antara boron dan nitrogen, banyak kimia organik menemukan gaung dalam kimia boron—nitrogen, seperti pada borazina ” benzena anorganik”. Meski demikian, analoginya tidak tepat sama karena mudahnya serangan nukleofilik kepada boron yang kekurangan elektron. Hal yang tidak mungkin terjadi dalam cincin yang hanya tersusun atas karbon saja.
Kategori nitrida terbesar adalah nitrida interstisial dengan rumus MN, M 2 N, dan M 4 N walaupun variasi komposisi sangat dimungkinkan , di mana atom nitrogen yang kecil terletak di dalam celah pada kubik logam atau kisi kemasan-rapat heksagonal. Mereka memiliki kilau dan daya hantar listrik seperti logam. Mereka dapat menghasilkan amonia atau nitrogen melalui hidrolisis yang sangat lambat. Dalam skala industri, amonia NH 3 adalah senyawa nitrogen paling penting dan dibuat dalam jumlah yang lebih besar daripada senyawa lain, karena ia memberi kontribusi yang signifikan terhadap kebutuhan gizi organisme terestrial melalui perannya sebagai prekursor untuk makanan dan pupuk.
Amonia adalah gas alkalis tak berwarna dengan aroma menusuk yang khas. Dalam bentuk cair, ia merupakan pelarut yang baik dengan panas penguapan yang tinggi memungkinkan digunakan dalam labu vakum , yang juga memiliki viskositas dan konduktivitas listrik rendah, konstanta dielektrik tinggi, serta massa jenis yang lebih kecil daripada air.
Namun, ikatan hidrogen pada NH 3 lebih lemah daripada dalam H 2 O karena elektronegativitas nitrogen lebih rendah daripada oksigen, dan pasangan elektron sunyi NH 3 hanya satu dibandingkan H 2 O yang memiliki dua pasangan elektron sunyi. Oleh karena itu, amonia mengalami disosiasi diri, mirip dengan air, menghasilkan amonium dan amida.